Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Med ; 52(5)2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37772381

RESUMO

Following the publication of the above article, an interested reader drew to the authors' attention that, in Fig. 7 on p. 1282, a pair of the western blotting bands in the Akt blot positioned adjacent to each other looked strikingly similar. Although the authors considered that the data were correct as shown (and the Editorial Office were in agreement that it was not certain that the bands were identical), to avoid any possible confusion or suspicion, the authors requested that the figure be reprinted showing the Akt data obtained from one of the repeated experiments. The revised version of Fig. 7, containing the replacement data for the Akt western blotting data, is shown opposite. All the authors agree with the publication of this corrigendum, and are grateful to the Editor of International Journal of Molecular Medicine for allowing them the opportunity to publish this for the purposes of clarifying the presented data. [International Journal of Molecular Medicine 40: 1277­1284, 2017; DOI: 10.3892/ijmm.2017.3104].

2.
Pharmaceuticals (Basel) ; 16(4)2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-37111351

RESUMO

Meldonium (MID) is a synthetic drug designed to decrease the availability of L-carnitine-a main player in mitochondrial energy generation-thus modulating the cell pathways of energy metabolism. Its clinical effects are mostly evident in blood vessels during ischemic events, when the hyperproduction of endogenous carnitine enhances cell metabolic activities, leading to increased oxidative stress and apoptosis. MID has shown vaso-protective effects in model systems of endothelial dysfunction induced by high glucose or by hypertension. By stimulating the endothelial nitric oxide synthetase (eNOS) via PI3 and Akt kinase, it has shown beneficial effects on the microcirculation and blood perfusion. Elevated intraocular pressure (IOP) and endothelial dysfunction are major risk factors for glaucoma development and progression, and IOP remains the main target for its pharmacological treatment. IOP is maintained through the filtration efficiency of the trabecular meshwork (TM), a porous tissue derived from the neuroectoderm. Therefore, given the effects of MID on blood vessels and endothelial cells, we investigated the effects of the topical instillation of MID eye drops on the IOP of normotensive rats and on the cell metabolism and motility of human TM cells in vitro. Results show a significant dose-dependent decrease in the IOP upon topic treatment and a decrease in TM cell motility in the wound-healing assay, correlating with an enhanced expression of vinculin localized in focal adhesion plaques. Motility inhibition was also evident on scleral fibroblasts in vitro. These results may encourage a further exploration of MID eye drops in glaucoma treatment.

3.
World J Stem Cells ; 13(11): 1783-1796, 2021 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-34909123

RESUMO

BACKGROUND: Adipose-derived stem cells (ASCs) have been increasingly explored for cell-based medicine because of their numerous advantages in terms of easy availability, high proliferation rate, multipotent differentiation ability and low immunogenicity. In this respect, they have been widely investigated in the last two decades to develop therapeutic strategies for a variety of human pathologies including eye disease. In ocular diseases involving the retina, various cell types may be affected, such as Müller cells, astrocytes, photoreceptors and retinal pigment epithelium (RPE), which plays a fundamental role in the homeostasis of retinal tissue, by secreting a variety of growth factors that support retinal cells. AIM: To test ASC neural differentiation using conditioned medium (CM) from an RPE cell line (ARPE-19). METHODS: ASCs were isolated from adipose tissue, harvested from the subcutaneous region of healthy donors undergoing liposuction procedures. Four ASC culture conditions were investigated: ASCs cultured in basal Dulbecco's Modified Eagle Medium (DMEM); ASCs cultured in serum-free DMEM; ASCs cultured in serum-free DMEM/F12; and ASCs cultured in a CM from ARPE-19, a spontaneously arising cell line with a normal karyotype derived from a human RPE. Cell proliferation rate and viability were assessed by crystal violet and MTT assays at 1, 4 and 8 d of culture. At the same time points, ASC neural differentiation was evaluated by immunocytochemistry and western blot analysis for typical neuronal and glial markers: Nestin, neuronal specific enolase (NSE), protein gene product (PGP) 9.5, and glial fibrillary acidic protein (GFAP). RESULTS: Depending on the culture medium, ASC proliferation rate and viability showed some significant differences. Overall, less dense populations were observed in serum-free cultures, except for ASCs cultured in ARPE-19 serum-free CM. Moreover, a different cell morphology was seen in these cultures after 8 d of treatment, with more elongated cells, often showing cytoplasmic ramifications. Immunofluorescence results and western blot analysis were indicative of ASC neural differentiation. In fact, basal levels of neural markers detected under control conditions significantly increased when cells were cultured in ARPE-19 CM. Specifically, neural marker overexpression was more marked at 8 d. The most evident increase was observed for NSE and GFAP, a modest increase was observed for nestin, and less relevant changes were observed for PGP9.5. CONCLUSION: The presence of growth factors produced by ARPE-19 cells in tissue culture induces ASCs to express neural differentiation markers typical of the neuronal and glial cells of the retina.

4.
Optom Vis Sci ; 98(2): 159-169, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33534380

RESUMO

SIGNIFICANCE: Contact lens (CL) wearing may cause discomfort and eye dryness. We describe here the efficacy of a synthetic polymer in protecting both the corneal epithelial cells and the CL from desiccation damage. Artificial tears containing this polymer might be helpful to treat or prevent ocular surface damage in CL wearers. PURPOSE: We aimed to investigate the protective effects of the synthetic polymer 2-methacryloyloxyethyl phosphorylcholine (poly-MPC) on corneal epithelial cells and CLs subjected to desiccation damage. METHODS: The interaction of poly-MPC with the cell membrane was evaluated on human primary corneal epithelial cells (HCE-F) by the sodium dodecyl sulfate damage protection assay or the displacement of the cell-binding lectin concanavalin A (ConA). Survival in vitro of HCE-F cells and ex vivo of porcine corneas exposed to desiccating conditions after pre-treatment with poly-MPC or hyaluronic acid (HA), hypromellose (HPMC), and trehalose was evaluated by a colorimetric assay. Soft CLs were soaked overnight in a solution of poly-MPC/HPMC and then let dry in ambient air. Contact lens weight, morphology, and transparency were periodically registered until complete dryness. RESULTS: Polymer 2-methacryloyloxyethyl phosphorylcholine and HPMC were retained on the HCE-F cell membrane more than trehalose or HA. Polymer 2-methacryloyloxyethyl phosphorylcholine, HA, and HPMC either alone or in association protected corneal cells from desiccation significantly better than did trehalose alone or in association with HA. Contact lens permeation by poly-MPC/HPMC preserved better their shape and transparency than did saline. CONCLUSIONS: Polymer 2-methacryloyloxyethyl phosphorylcholine coats and protects corneal epithelial cells and CLs from desiccation damage more efficiently compared with trehalose and as good as other reference compounds.


Assuntos
Lentes de Contato Hidrofílicas , Dessecação , Epitélio Corneano/efeitos dos fármacos , Fosforilcolina/análogos & derivados , Ácidos Polimetacrílicos/farmacologia , Falha de Prótese/efeitos dos fármacos , Animais , Células Cultivadas , Síndromes do Olho Seco/tratamento farmacológico , Humanos , Ácido Hialurônico/farmacologia , Derivados da Hipromelose/farmacologia , Fosforilcolina/farmacologia , Dodecilsulfato de Sódio/toxicidade , Suínos , Trealose/farmacologia
5.
Cells ; 11(1)2021 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-35011613

RESUMO

Hyperglycemia-induced impairment of the blood-retinal barrier represents the main pathological event in diabetic retinopathy that is elicited by a reduced cellular response to an accumulation of reactive oxygen species (ROS) and increased inflammation. The purpose of the study was to evaluate whether the selective ß1-adrenoreceptor (ß1-AR) antagonist metoprolol could modulate the inflammatory response to hyperglycemic conditions. For this purpose, human retinal endothelial cells (HREC) were treated with normal (5 mM) or high glucose (25 mM, HG) in the presence of metoprolol (10 µM), epinephrine (1 µM), or both compounds. Metoprolol prevented both the HG-induced reduction of cell viability (MTT assays) and the modulation of the angiogenic potential of HREC (tube formation assays) reducing the TNF-α, IL-1ß, and VEGF mRNA levels (qRT-PCR). Moreover, metoprolol prevented the increase in phospho-ERK1/2, phospho-cPLA2, COX2, and protein levels (Western blot) as well as counteracting the translocation of ERK1/2 and cPLA2 (high-content screening). Metoprolol reduced ROS accumulation in HG-stimulated HREC by activating the anti-oxidative cellular response mediated by the Keap1/Nrf2/HO-1 pathway. In conclusion, metoprolol exerted a dual effect on HG-stimulated HREC, decreasing the activation of the pro-inflammatory ERK1/2/cPLA2/COX2 axis, and counteracting ROS accumulation by activating the Keap1/Nrf2/HO-1 pathway.


Assuntos
Antagonistas de Receptores Adrenérgicos beta 1/farmacologia , Anti-Inflamatórios/farmacologia , Células Endoteliais/patologia , Glucose/toxicidade , Metoprolol/farmacologia , Microvasos/patologia , Retina/patologia , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Proliferação de Células/efeitos dos fármacos , Ciclo-Oxigenase 2/metabolismo , Regulação para Baixo/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Epinefrina/farmacologia , Heme Oxigenase-1/metabolismo , Humanos , Interleucina-1beta/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , Neovascularização Fisiológica/efeitos dos fármacos , Fosfolipases A2 Citosólicas/metabolismo , Fosforilação/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
6.
Cornea ; 39(11): 1419-1425, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32452988

RESUMO

PURPOSE: To isolate and characterize an epithelial cell (EC) line from a human donor cornea, which may serve as a reliable test cell line to address biomolecular issues and study the response of corneal epithelium to stressing events and therapeutic treatments. METHODS: A corneal button from a donor patient was treated with enzymes to separate the epithelial sheet and to free EC, which were put in tissue culture. ECs were characterized by optic and electronic microscopies, cytokeratins and PAX6 were detected by SDS-PAGE and western immunoblotting, the barrier function was evaluated by transepithelial electric resistance and by the immune detection of membrane junction proteins, and the karyotype was characterized according to the classical methods. RESULTS: Morphological analyses returned the picture of classical homogeneous polygonal morphology as expecetd by EC that was maintained over time and several in vitro passages. Transepithelial electric resistance values were characteristic of a typical barrier-forming cell line. The cytokeratin expression pattern was the one expected for corneal EC with a predominance of CK3 and CK5 and different from a human keratocyte cell line. The male karyotype showed 2 trisomies, of chromosomes 8 and 11. CONCLUSIONS: All the data so far obtained with the HCE-F cells concur to certify this cell line as a stable, true primary human corneal EC line, which could then be used as a test cell line to study and address the questions concerning the biological response of human corneal epithelium to stressing and/or therapeutic treatments and as a term of comparison for EC derived from pathological corneas.


Assuntos
Epitélio Corneano/citologia , Western Blotting , Linhagem Celular , Impedância Elétrica , Epitélio Corneano/fisiologia , Humanos , Doadores de Tecidos
7.
Biomedicines ; 8(4)2020 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-32260532

RESUMO

 Background: The etiology and the mechanism behind atropine treatment of progressive myopia are still poorly understood. Our study addressed the role of scleral and choroidal fibroblasts in myopia development and atropine function. METHODS: Fibroblasts treated in vitro with atropine or 7-methylxanthine were tested for ECM production by Western blotting. Corneal epithelial cells were treated with atropine in the presence or absence of colostrum or fucosyl-lactose, and cell survival was evaluated by the MTT metabolic test. RESULTS: Atropine and 7-methyl-xanthine stimulated collagen I and fibronectin production in scleral fibroblasts, while they inhibited their production in choroidal fibroblasts. Four days of treatment with atropine of corneal epithelial cells significantly decreased cell viability, which could be prevented by the presence of colostrum or fucosyl-lactose. CONCLUSIONS: Our results show that atropine may function in different ways in different eye districts, strengthening the scleral ECM and increasing permeability in the choroid. The finding that colostrum or fucosyl-lactose attenuate the corneal epithelial toxicity after long-term atropine treatment suggests the possibility that both compounds can efficiently blunt its toxicity in children subjected to chronic atropine treatment.

8.
Biochem Pharmacol ; 175: 113908, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32171729

RESUMO

The ELAVL1 (or human antigen R - HuR) RNA binding protein stabilizes the mRNA, with an AU-rich element, of several genes such as growth factors (i.e. VEGF) and inflammatory cytokines (i.e. TNFα). We hereby carried out a virtual screening campaign in order to identify and test novel HuR-mRNA disruptors. Best-scored compounds were tested in an in-vitro model of diabetic retinopathy, namely human retinal endothelial cells (HRECs) challenged with high-glucose levels (25 mM). HuR, VEGF and TNFα protein contents were evaluated by western-blot analysis in total cell lysates. VEGF and TNFα released from HRECs were measured in cell medium by ELISA. We found that two derivatives bearing indole moiety, VP12/14 and VP12/110, modulated HuR expression and decreased VEGF and TNF-α release by HREC exposed to high glucose (HG) levels. VP12/14 and VP12/110 inhibited VEGF and TNF-α release in HRECs challenged with high glucose levels, similarly to dihydrotanshinone (DHTS), a small molecule known to interfere with HuR- TNFα mRNA binding. The present findings demonstrated that VP12/14 and VP12/110 are innovative molecules with anti-inflammatory and anti-angiogenic properties, suggesting their potential use as novel candidates for treatment of diabetic retinopathy.


Assuntos
Proteína Semelhante a ELAV 1/metabolismo , Células Endoteliais/metabolismo , Glucose/toxicidade , Indóis/administração & dosagem , RNA Mensageiro/metabolismo , Retina/metabolismo , Sítios de Ligação/fisiologia , Proteína Semelhante a ELAV 1/química , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/patologia , Glucose/administração & dosagem , Humanos , Indóis/química , Mediadores da Inflamação/antagonistas & inibidores , Mediadores da Inflamação/metabolismo , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , RNA Mensageiro/química , Retina/efeitos dos fármacos , Retina/patologia
9.
Ophthalmic Res ; 60(2): 94-99, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29920480

RESUMO

Dry eye is the most prominent pathology among those involving the ocular surface: a decrease of the aqueous (less frequent) or the lipid (more frequent) component of the tear film is the cause of the diminished stability of tears that is observed in this pathology. Dry eye shows a clear distribution linked to both sex (being more frequent among women) and age (increasing with aging). Therefore, specific treatments taking into account the etiology of the disease would be desired. The role of lactoferrin and its functional mimetic lactobionic acid are reported here as a possible remedy for age-related dry eye.


Assuntos
Dissacarídeos/fisiologia , Síndromes do Olho Seco/metabolismo , Lactoferrina/fisiologia , Lágrimas/metabolismo , Humanos
10.
Exp Eye Res ; 172: 123-127, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29653143

RESUMO

The aim of the present study was to investigate, in the Statens Seruminstitut Rabbit Cornea (SIRC) cell line, the presence of epithelial and fibroblastic markers, comparing their levels with those of the human Retinal Pigmented Epithelial (ARPE-19) cell line, and the Human Keratocyte (HK) cell line, respectively. SIRC cells, often described as of epithelial origin, are used as a corneal epithelial barrier model to study the permeability of ophthalmic drugs. However, they show a morphology that is more consistent with a fibroblastic cell phenotype, similar to corneal keratocytes. Our comparative analyses of cell type specific markers demonstrated that SIRC do not express cytokeratins 19 and 16 (typical of ARPE-19) and cytokeratin 9 (typical of HK); they do express cytokeratins 3 and 18 common to all three cell lines, and cytokeratin 12 typical of ARPE-19. Tight junction proteins were absent in HK, and lower in SIRC than in ARPE-19. All cell lines expressed the markers lumican and vimentin, with SIRC expressing intermediate levels between HK and ARPE-19; alpha-SMA was highly expressed in all lines. These markers, considered typical of fibroblasts, can be, however, expressed by epithelial cells during wound healing. These results might suggest that long-term in vitro cultivation of cell lines leads to a derangement of their specific phenotype, most likely due to genetic and epigenetic factors. This could be the reason why SIRC cells came to exhibit a hybrid nature between epithelial and fibroblastic cells.


Assuntos
Biomarcadores/metabolismo , Ceratócitos da Córnea/citologia , Epitélio Corneano/citologia , Animais , Linhagem Celular , Ceratócitos da Córnea/metabolismo , Epitélio Corneano/metabolismo , Fenótipo , Coelhos , Epitélio Pigmentado da Retina/citologia , Epitélio Pigmentado da Retina/metabolismo
11.
Cornea ; 37(8): 1058-1063, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29634672

RESUMO

PURPOSE: The aim of this study was to investigate the properties of lactobionic acid (LA) as a possible supplement in artificial tears in in vitro and in vivo experimental model systems. LA is a bionic derivative of a polyhydroxy acid, which consists of one galactose attached by an ether link to a gluconic acid. It is a molecule endowed with several properties that make it an ideal supplement in artificial tears: it is highly hygroscopic and a powerful antioxidant, it is an iron chelator and inhibits matrix metalloprotease activity; it favors wound healing (WH); and it inhibits bacterial growth. METHODS: Promotion of WH by LA, alone or in combination with hyaluronic acid (HA), was investigated in vitro on monolayers of rabbit corneal cells (Statens Seruminstitut) and in vivo after epithelium debridement of rabbit corneas. TGF-ß expression and MMP-9 activity in wounded corneas were detected in tears and cornea extracts by western blot or by Enzyme Linked ImmunoSorbent Assay (ELISA). Bacterial growth inhibition by LA was checked on Staphylococcus aureus isolates in liquid culture. RESULTS: LA, with or without HA, favors WH in vitro and in vivo. The WH assay on the rabbit cornea showed that 4% LA in association with 0.15% HA also resulted in a blunted increase of MMP-9 and TGF-ß in tears and corneal tissue. Finally, the presence of 4% LA resulted in slower growth of cultured bacterial isolates. CONCLUSIONS: Our findings support the hypothesis that LA could be a useful supplement to artificial tears to treat ocular surface dysfunction such as dry eye.


Assuntos
Córnea/metabolismo , Doenças da Córnea/tratamento farmacológico , Dissacarídeos/farmacologia , Cicatrização/fisiologia , Animais , Contagem de Células , Linhagem Celular , Córnea/patologia , Doenças da Córnea/patologia , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Coelhos , Cicatrização/efeitos dos fármacos
12.
Cutan Ocul Toxicol ; 37(1): 71-76, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28658977

RESUMO

PURPOSE: Preservatives are used in multi-dose ophthalmic topical medications in order to prevent contamination by bacteria and fungi. However, prolonged use of preserved eye drops, as it may happen in dry eye or glaucoma, may damage cells of the ocular surface. Therefore, an important goal is to find preservatives with low toxicity which are mild to host cells, still able to prevent drug contamination so to maintain their sterility and efficacy. Hence, aim of this study has been to compare the relative toxicity on a rabbit corneal cell line of a new preservative, made by the association of N-hydroxy-methyl-glycinate (NIG) with disodium-ethylene diamine tetra-acetate (EDTA), with other known and widely used eye-drops preservatives. MATERIALS AND METHODS: Rabbit corneal cells (SIRC) were tested either in 96-well plates or in suspension culture. Treatments with preservatives (used at known bacteriostatic concentrations) included: benzalkonium chloride (BAK), polyquaternium-1 (PQ-1), sodium perborate (SP: NaBO3 * H2O), and NIG ± EDTA at different concentrations (0.001% and 0.002%), and different treatment times (from 30 minutes to 120 hours). At the end of treatment, cell survival was evaluated by a specific spectrophotometric method through the metabolic conversion of MTT [3-(4,5-dimethylthiazol-2-yl) 2, 5-diphenyltetrazolium bromide] into formazan crystals. RESULTS: Almost no cell toxicity was evident for NIG and SP at either concentration (0.001% or 0.002%), while a low toxicity was observed for PQ-1 (62% at the highest dose at 120 hours). BAK, as expected, showed the highest toxicity (60-80% at 30 minutes, and over 90% from eight hours onward). EDTA 0.1% alone or in combination with NIG 0.002%, showed no toxicity at 24 hours, and even resulted in cell growth promotion (46% and 38%, respectively), after 48 hours of treatment. CONCLUSIONS: These data show that the new preservative NIG/EDTA, at doses known to have effective antimicrobial properties, has a very low toxicity on corneal cells, and so it can be safely used in multi-dose eye drops.


Assuntos
Córnea/citologia , Ácido Edético/toxicidade , Conservantes Farmacêuticos/toxicidade , Sarcosina/análogos & derivados , Animais , Compostos de Benzalcônio/toxicidade , Boratos/toxicidade , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Soluções Oftálmicas , Polímeros/toxicidade , Coelhos , Sarcosina/toxicidade
13.
Mol Neurobiol ; 55(4): 3344-3350, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28497200

RESUMO

Neuroblastoma (NB) is an extracranial solid cancer and the most common cancer in infancy. Despite the standard treatment for NB is based on the combination of chemotherapeutic drugs such as doxorubicin, vincristine, cyclophosphamide, and cisplatin, chemoresistance occurs over the time. The aim of the present research was to evaluate the effect of bortezomib (BTZ) (50 nM) on NB cell viability and how lipoic acid (ALA) (100 µM) modifies pharmacological response to this chemotherapeutic agent. Cell viability was assessed by ATP luminescence assay whereas expression of oxidative stress marker (i.e., heme oxygenase-1) and endoplasmic reticulum stress proteins was performed by real-time PCR, western blot, and immunofluorescence. Our data showed that BTZ treatment significantly reduced cell viability when compared to untreated cultures (about 40%). Interestingly, ALA significantly reduced the efficacy of BTZ (about 30%). Furthermore, BTZ significantly induced heme oxygenase-1 as a result of increased oxidative stress and such overexpression was prevented by concomitant treatment with ALA. Similarly, ALA significantly reduced BTZ-mediated endoplasmic reticulum stress as measured by reduction in BiP1 and IRE1α, ERO1α, and PDI expression. In conclusion, our data suggest that BTZ efficacy is dependent on cellular redox status and such mechanisms may be responsible of chemoresistance to this chemotherapeutic agent.


Assuntos
Bortezomib/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Neuroblastoma/patologia , Ácido Tióctico/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Humanos , Proteínas de Neoplasias/metabolismo , Transporte Proteico/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
14.
Int J Mol Med ; 40(4): 1277-1284, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28849034

RESUMO

The mechanisms underlying cutaneous melanogenesis have been widely studied; however, very little is known about uveal melanogenesis. Melanin is normally produced by uveal melanocytes and gives the color to the iris. A derangement from this normal production may occur, for instance, by iatrogenic events, such as glaucoma therapy with prostaglandins that may enhance cutaneous and iris pigmentation. In this study, we investigated the mechanisms that regulate uveal melanogenesis in human uveal melanoma cells (92.1) and murine cutaneous melanoma cells (B16-F1). In the first part of the study, we compared the effects of known cutaneous pigmenting agents on the B16-F1 and 92.1 cells, showing an opposite response of the two cell lines. Subsequently, using argan oil, a known depigmenting agent for murine cutaneous melanoma cells, on 92.1 cells, we found that in these cells, it also functioned as an inhibitor of melanogenesis and tyrosinase expression. From a molecular perspective, treatment of the 92.1 cells with argan oil decreased melanogenesis-associated transcription factor (MITF) gene expression by inducing MITF phosphorylation at Ser73, thus leading to MITF ubiquitination and disposal. It also led to the downregulation of the extracellular signal-regulated kinase (ERK)1/2 and Akt pathways, also known to be involved in cutaneous melanogenesis, although with an opposing function. Taken together, our data indicate that: ⅰ) some differences exist in the regulation of melanogenesis between cutaneous and uveal melanoma cells; and ⅱ) argan oil exerts a depigmenting effect on 92.1 cells through its action on the ERK1/2 and Akt pathways.


Assuntos
Melaninas/antagonistas & inibidores , Melanócitos/efeitos dos fármacos , Monofenol Mono-Oxigenase/antagonistas & inibidores , Óleos de Plantas/farmacologia , Úvea/efeitos dos fármacos , Animais , Linhagem Celular Tumoral , Regulação da Expressão Gênica , Humanos , Melaninas/biossíntese , Melanócitos/metabolismo , Melanócitos/patologia , Melanoma/tratamento farmacológico , Melanoma/genética , Melanoma/metabolismo , Melanoma/patologia , Camundongos , Fator de Transcrição Associado à Microftalmia/genética , Fator de Transcrição Associado à Microftalmia/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Monofenol Mono-Oxigenase/genética , Monofenol Mono-Oxigenase/metabolismo , Especificidade de Órgãos , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Pele/efeitos dos fármacos , Pele/metabolismo , Pele/patologia , Ubiquitinação/efeitos dos fármacos , Úvea/metabolismo , Úvea/patologia , Neoplasias Uveais/tratamento farmacológico , Neoplasias Uveais/genética , Neoplasias Uveais/metabolismo , Neoplasias Uveais/patologia
15.
Mol Med Rep ; 16(4): 4393-4402, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28791360

RESUMO

Angiogenesis is the formation of new vessels starting from pre-existing vasculature. Tumour environment is characterized by 'aberrant angiogenesis', whose main features are tortuous and permeable blood vessels, heterogeneous both in their structure and in efficiency of perfusion and very different from normal vessels. Therapeutic strategies targeting the three pathways chiefly involved in tumour angiogenesis, VEGF, Notch and Ang signalling, have been identified to block the vascular supply to the tumour. However, phenomena of toxicity, development of primary and secondary resistance and hypoxia significantly blunted the effects of anti-angiogenic drugs in several tumour types. Thus, different strategies aimed to overcome these problems are imperative. The focus of the present review was some principal 'alternative' approaches to classic antiangiogenic therapies, including the cyclooxygenase-2 (COX-2) blockade, the use of oligonucleotide complementary to the miRNA to compete with the mRNA target (antimiRs) and the inhibition of matrix metalloproteinases (MMPs). The role of blood soluble VEGFA as a predictive biomarker during antiangiogenic therapy in gastric, ovarian and colorectal cancer was also examined.


Assuntos
Angiopoietinas/metabolismo , Neoplasias/irrigação sanguínea , Neoplasias/metabolismo , Neovascularização Patológica/metabolismo , Receptores Notch/metabolismo , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Humanos
16.
PLoS One ; 11(9): e0159874, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27631977

RESUMO

It is suspected that microbial infections take part in the pathogenesis of diabetes mellitus type 1 (T1DM). Glucose-induced insulin secretion is accompanied by the release of free arachidonic acid (AA) mainly by cytosolic- and calcium independent phospholipases A2 (cPLA2 and iPLA2). Insulinoma cell line (INS-1E) was infected with E. coli isolated from the blood culture of a patient with sepsis. Invasion assay, Scanning Electron Microscopy and Transmission Electron Microscopy demonstrated the capacity of E. coli to enter cells, which was reduced by PLA2 inhibitors. Glucose-induced insulin secretion was significantly increased after acute infection (8h) but significantly decreased after chronic infection (72h). PLA2 activities, cPLA2, iPLA2, phospho-cPLA2, and COX-2 expressions were increased after acute and, even more, after chronic E. coli infection. The silencing of the two isoforms of PLA2s, with specific cPLA2- or iPLA2-siRNAs, reduced insulin secretion after acute infection and determined a rise in insulin release after chronic infection. Prostaglandins E2 (PGE2) production was significantly elevated in INS-1E after long-term E. coli infection and the restored insulin secretion in presence of L798106, a specific EP3 antagonist, and NS-398, a COX-2 inhibitor, and the reduction of insulin secretion in presence of sulprostone, a specific EP3 agonist, revealed their involvement in the effects triggered by bacterial infection. The results obtained demonstrated that cPLA2 and iPLA2 play a key role in insulin secretion process after E. coli infection. The high concentration of AA released is transformed into PGE2, which could be responsible for the reduced insulin secretion.


Assuntos
Cálcio/metabolismo , Citosol/metabolismo , Dinoprostona/metabolismo , Escherichia coli/metabolismo , Insulina/metabolismo , Fosfolipases A2/metabolismo , Linhagem Celular , Ativação Enzimática , Humanos , Secreção de Insulina
17.
Front Pharmacol ; 7: 519, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28111549

RESUMO

Primary solid tumors originate close to pre-existing tissue vasculature, initially growing along such tissue blood vessels, and this phenomenon is important for the metastatic potential which frequently occurs in highly vascularized tissues. Unfortunately, preclinic and clinic anti-angiogenic approaches have not been very successful, and multiple factors have been found to contribute to toxicity and tumor resistance. Moreover, tumors can highlight intrinsic or acquired resistances, or show adaptation to the VEGF-targeted therapies. Furthermore, different mechanisms of vascularization, activation of alternative signaling pathways, and increased tumor aggressiveness make this context even more complex. On the other hand, it has to be considered that the transitional restoration of normal, not fenestrated, microvessels allows the drug to reach the tumor and act with the maximum efficiency. However, these effects are time-limited and different, depending on the various types of cancer, and clearly define a specific "normalization window." So, new horizons in the therapeutic approaches consist on the treatment of the tumor with pro- (instead of anti-) angiogenic therapies, which could strengthen a network of well-structured blood vessels that facilitate the transport of the drug.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...